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In this work, we investigate the accuracy of controlling spin I = 1, 3/2 and 5/2 spin systems by average
Hamiltonian theory. By way of example, we consider a simple two-pulse echo sequence and compare this
perturbation scheme to a numerical solution of the Von Neumann equation. For the different values of I,
we examine this precision as a function of the quadrupolar coupling as well as various experimental
parameters such as the pulse spacing and pulse width. Experiments and simulations on I = 3/2 and
I = 5/2 spin systems are presented that highlight a spectral artifact introduced due to finite pulse widths
as predicted by average Hamiltonian theory. The control of these spin systems by this perturbation
scheme is considered by investigating a phase cycling scheme that suppresses these artifacts to zer-
oth-order of the Magnus expansion.

� 2008 Published by Elsevier Inc.
1. Introduction

The ability to control the dynamics of nuclear spins has been of
general interest to the NMR community since the early days of the
field [1]. A celebrated example is Hahn’s demonstration of the refo-
cusing of spin magnetization by the application of a suitable RF
pulse sequence as nuclear spins of a liquid dephased due to static
field inhomogeneity [2]. Numerous examples of improving quan-
tum control in NMR are known within the community, such as en-
hanced radio frequency pulses that precisely implement a desired
system evolution [3–8]. The aim of the work presented here is to
study average Hamiltonian theory (AHT), developed by Waugh
and Haeberlen [9], as a viable perturbation scheme for controlling
the complex spin dynamics for an ensemble of spin I = 1, 3/2 and 5/
2 nuclei of a solid evolving under the first-order quadrupolar inter-
action for a simple two-pulse sequence.

A well known study that probed the validity of AHT was re-
ported on by Maricq for spin I = 1/2 nuclei coupled via the dipolar
interaction [10]. In that work, a perturbation expansion is imple-
mented from Floquet theory that gives an average Hamiltonian
equivalent to that obtained from a Magnus expansion whose con-
vergence is shown to depend on a series of resonances. The inves-
tigation of the spin dynamics of nuclei with I > 1 poses a theoretical
challenge because the dimension of the density matrix increases
with I as (2I + 1)(2I + 1). In addition, the strength of the quadrupo-
Elsevier Inc.

s).
lar coupling for such spin systems is often the same order of mag-
nitude as the perturbing RF Hamiltonian. Thus implementing a
desired evolution is challenging in both theory and practice. In this
work, we focus on a simple two-pulse cycle and investigate the rel-
ative accuracy of first-order AHT compared to a numerical result
obtained from the Louiville Von Neumann (VN) equation. While
this simple cycle is useful for echo spectroscopy of quadrupolar
spins, it also forms the basis of many homonuclear multiple-pulse
decoupling schemes, such as WAHUHA and MREV-8, that allow for
spectroscopic studies of solids [11].

I. Solomon first reported on multiple spin echoes he observed in
KI and analyzed the spin dynamics ignoring the quadrupolar interac-
tion during the RF pulses [12]. By accounting for the system evolving
under the first-order quadrupolar interaction during the RF pulses,
Man reported on multiple quantum coherence detected in echo
spectroscopy of spin I = 5/2 nuclei [13] and the suppression of spuri-
ous artifacts in spin I = 3/2 nuclei acquired by this pulsed scheme
[14]. Haase and Oldfield investigated spin relaxation and linewidths
of a variety of non-integer spins using an echo experiment and pro-
vided an analysis that accounts for the evolution of the spin system
under the first-order quadrupolar interaction during the RF pulses
[15]. Nagel et al. have also reported on a density matrix calculation
of spin echoes for spin 5/2 nuclei [16], and Pandey et al. reported
on the pulsed NMR signal of spin I = 3/2 nuclei [17].

The simulation study of this work probes the validity of AHT for
a simple two-pulse sequence for an ensemble of either I = 1, 3/2 or
5/2 spin systems. This is achieved by comparing the results ob-
tained by this analysis to an exact solution obtained computation-
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ally solving the VN equation. Dumazy et al. [18] described an opti-
mum phase cycle for a system of spin I = 3/2 nuclei that removes
ill-refocused echoes, anti-echoes and transient signals. The analy-
sis presented here is also used to predict a spectral distortion in
the spectra of spin I = 1, 3/2 and 5/2 nuclei acquired under this sim-
ple two-pulse cycle. The work we present also highlights a phase
cycling scheme that to first-order of the Magnus expansion sup-
presses this distortion, and experimental and simulation results
are presented demonstrating the efficacy of this technique.

2. Theory

Consider an ensemble of quadrupolar spins of a solid subject to
a high magnetic field. The first-order secular quadrupolar interac-
tion is given by

HQ ¼ xQ ½3IzIz � II� ð1Þ

where

xQ ¼
e2qQ

2Ið2I � 1Þ�h
ffiffiffi
6
p

ffiffiffi
3
2

r
P2ðcosðhÞÞ þ g

2

� �
cosð2hÞ sin2ðuÞ

h i
ð2Þ

In the above equations, xQ is the quadrupolar splitting, and
P2(cos(h)) is the second-order Legendre polynomial of cos(h), h
and u are the usual Euler angles and g is the quadrupolar asymme-
try parameter.

In the following, we analyze the evolution of a solid system
evolving under the pulse sequence shown in Fig. 1 which consists
of two p/2 phase shifted pulses separated by a delay s � 2a, where
2a is the p/2 pulse width. Our goal is to investigate the validity of
AHT for an ensemble of spin I = 1, 3/2 and 5/2 nuclei as a function
of xQ, s and a. Following the comparison of AHT to the VN solution,
we show how cycling the phases of the receiver in a well-defined
way can suppress artifacts in the spectra due to the evolution of
the system under HQ during the applied radio frequency pulses.

In the AHT approach, a time-dependent Hamiltonian of the sys-
tem over one cycle is replaced by an equivalent time-independent
average Hamiltonian. The time evolution of the system from time
t = 0, q(0), to the state at time t = tc, q(tc), is given by

qðtcÞ ¼ URFUintqð0ÞU�1
int U

�1
RF ð3Þ

where Uint is given by the Magnus expansion

Uintðtc; 0Þ ¼ exp �itc H0
int þ H1

int þ � � �
� �� �

ð4Þ

with
Fig. 1. A two-pulse sequence for refocusing the quadrupolar Hamiltonian. In the
figure, the two p/2 pulses have a width of 2a. The phases of the two-pulses shown
for the purposes of this work can be any combination of phase shifted 90 degree
pulses.
H0
int ¼

1
tc

Z tc

0

eH intðtÞdt ð5Þ

H1
int ¼

�i
2tc

Z tc

0

eH intðsÞ;
Z s

0

eH intð/Þd/

	 

ds ð6Þ

The propagator URF represents the interaction associated with the
sequence of RF pulses applied over a time tc and accounts for the
rotations imparted to the system. The rotation operator Rk(h) about
an angle h may be written

RkðhÞ ¼ exp½�ihIk� ð7Þ

where k = ±x, ±y. The spin operators for I = 1, I = 3/2 and I = 5/2 have
rotations in basis of the SU(3), SU(4) and SU(6) Lie Algebra groups,
respectively [19]. In the above equations, Hint refers to internal
Hamiltonian, which for our spin system is given by Eq. (1). When
a rotation is made that transforms the system to a toggling frame,
the toggling frame quadrupolar Hamiltonian is described by the
relationship

eH int ¼ U�1
RF HintURF ð8Þ

Given the form of Hint, the rotations are of the following form

exp½iIkh�II exp½�iIkh� ¼ II ð9Þ

expðihIxÞIzIz expð�ihIxÞ ¼
1
2
ðIyIy þ IzIzÞ �

1
2
ðIyIy � IzIzÞ cosð2hÞ

� 1
2
ðIyIz þ IyIzÞ sinð2hÞ ð10Þ

and

expðihIyÞIzIz expð�ihIyÞ ¼
1
2
ðIxIx þ IzIzÞ �

1
2
ðIxIx � IzIzÞ cosð2hÞ

þ 1
2
ðIxIz þ IzIxÞ sinð2hÞ ð11Þ

We note that the operators that comprise the toggling frame inter-
nal Hamiltonian transform exactly the same way independent of
the value of I. Therefore the calculation of the Hamiltonian in the
toggling frame is the same independent of the value of I, but the re-
sults are different in both dimension and magnitude. The calcula-
tion of H 0

int for an x, y cycle is the same for I = 1, 3/2 and 5/2 and
is given by

H0
int ¼

W
6s

IyIz þ IzIy � IxIy � IyIx
� �

ð12Þ

In the above expression, Ix, Iy and Iz are unitary matrix represen-
tations of the angular momentum operators for spin I = 1, 3/2 and
5/2, W ¼ 12axQ

p and 2a is the p/2 pulse width.
Next we consider the first-order term of the Magnus expansion

for the different values of I given by Eq. (6), which we have rewrit-
ten as

H1
int ¼

�i
2tc
½I1 þ I2 þ � � �� ð13Þ

Because H1
int consists of commutators, the calculation for H1

int for
spin I = 1, 3/2 and 5/2 will be different. For the quadrupolar echo se-
quence shown in Fig. 1, the toggling frame quadrupolar Hamilto-
nian during each stage is given in Table 1 of reference [20]. For
the computation of the first-order term, the expressions that in-
volve the commutator of toggling Hamiltonians from the same time
stage all cancel. That is,

ZZ
½eHj; eHk�dt1 dt0 ¼ 0 ð14Þ



Table 1
Integrated first-order terms of the Magnus expansion for the quadrupolar Hamilto-
nian for 8 cycles of the quadrupolar echo pulse sequence in Fig. 1 that produce an
echo

Pulse 1 Pulse 2 H0
xQ

x y W
6s ½IyIz þ IzIy � IxIy � IyIx�

x �y W
6s ½IyIz þ IzIy þ IxIy þ IyIx�

�x y W
6s ½�IyIz � IzIy þ IxIy þ IyIx�

�x �y W
6s ½�IyIz � IzIy � IxIy � IyIx�

y x W
6s ½�IxIy � IyIx � IzIx � IxIz�

y �x W
6s ½IxIy þ IyIx � IzIx � IxIz�

�y x W
6s ½IxIy þ IyIx þ IzIx þ IxIz�

�y �x W
6s ½�IxIy � IyIx þ IzIx þ IxIz�

In the table W ¼ 12axQ
p , xQ is the quadrupolar coupling constant and 2a is the p/2

pulse width.
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for j = k. The above expression is true for all the domains of integra-
tion, including time d2 and d4, which are time-dependent.

The remaining terms in the sum have been computed as follows

I1 ¼
Z sþa

s�a

Z s�a

0
½eH2 � eH1 � eH1 � eH2�dt2 dt1 ð15Þ

I2 ¼
Z 2s�a

sþa

Z s�a

0
½eH3 � eH1 � eH1 � eH3�dt3 dt1

þ
Z 2s�a

s

Z s

s�2a
½eH3 � eH2 � eH2 � eH3�dt3 dt2 ð16Þ

I3 ¼
Z 2sþa

2s�a

Z s�a

0
½eH4 � eH1 � eH1 � eH4�dt4 dt1

þ
Z 2sþa

2s�a

Z sþa

s�a
½eH4 � eH2 � eH2 � eH4�dt4 dt2

þ
Z 2sþa

2s�a

Z 2s�a

sþa
½eH4 � eH3 � eH3 � eH4�dt4 dt3 ð17Þ

I4 ¼
Z 3s

2sþa

Z s�a

0
½eH5 � eH1 � eH1 � eH5�dt5 dt1

þ
Z 3s

2sþa

Z sþa

s�a
½eH5 � eH2 � eH2 � eH5�dt5 dt2

þ
Z 3s

2sþa

Z 2s�a

sþa
½eH5 � eH3 � eH3 � eH5�dt5 dt3

þ
Z 3s

2sþa

Z 2sþa

2s�a
½eH5 � eH4 � eH4 � eH5�dt5 dt4 ð18Þ

From the above expressions, it is evident that the first-order term of
the Magnus expansion may consist of terms that are contributions
from double integrals involving delay terms multiplying pulse
terms, pulse terms multiplying pulse terms or delay terms multi-
plying delay terms.
H1
int ¼

�i
6s
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s2x2
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ffiffiffiffiffiffi
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p

s2x2
Q 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð27Þ
For spin I = 1 we find,

I1 ¼
�18ia2x2

Q sin pða�sÞ
4a

h i2

4p
Ix ð19Þ

I2 ¼
�18ia2x2

Q cos ps
4a

� �2

4p
Ix ð20Þ
I3 ¼
18ia2x2

Q cos ps
4a

� �2

4p
�

18ia2x2
Q p cosðps

2aÞ þ sin ps
a

� �� �
8p2

" #
Iz

þ
18ia2x2

Q 1þ cos ps
a

� �� �
8p2 Iy

þ
18iha2x2

Q p cos ps
2a

� �
þ sin ps

a

� �� �
8p2 Ix ð21Þ

I4 ¼
18ia2x2

Q cos pðaþsÞ
4a

h i2

4p
Iz ð22Þ

Summing up all four terms of the integral, the first-order term of
the Magnus expansion for an x, y quadrupolar echo cycle for spin
I = 1 reduces to

H1
int ¼

B
6s

Iy �
A
6s

Iz þ
A
6s

Ix ð23Þ

where

A ¼
18a2x2

Q p �2þ sin ps
2a

� �� �
þ sin ps

a

� �� �
p2 ð24Þ

and

B ¼
18a2x2

Q 1þ cos ps
a

� �� �
p2 ð25Þ

Together with Eq. (14), these results indicate that the only
terms that remain are terms that are quadratic in a. As a conse-
quence, all the higher order terms are expected to vanish in the
case that the pulse width approaches zero.

For spin-3/2 and 5/2, we have taken a� s, so that terms
quadratic in a2 are neglected. This assumption makes physical
sense as the pulse width, 2a, is usually on the order of 1 ls
while the pulse spacing time, s, is typically on the order of
10–100 ls. Working out all the terms (I1, I2, I3, I4) for spin I = 3/2
and 5/2, the first-order term of the Magnus expansion for an
x, y quadrupolar echo cycle was computed. For the case of
I = 3/2, we find

H1
int ¼

�i
6s

0 0 9
ffiffiffi
3
p

s2x2
Q 0

0 0 0 �9
ffiffiffi
3
p

s2x2
Q

�9
ffiffiffi
3
p

s2x2
Q 0 0 0

0 9
ffiffiffi
3
p

s2x2
Q 0 0

0BBBBB@

1CCCCCA ð26Þ

For the case I = 5/2, we find
In contrast to the results obtained for spin I = 1, the above re-
sults indicate a contributing factor that scales as s2. This term
arises from the non-zero commutator of delay terms times delay
terms in the first-order term of the Magnus expansion. As a conse-
quence of this result, even for delta function RF pulses, the first-or-
der term and all higher order terms are non-zero.
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With the above results, we study the range of validity of AHT by
comparing this perturbation approach to a numerical solution of
the VN equation. The analysis is based on comparing the single
and multiple quantum coherences in the density matrix at 3s for
the solution obtained by AHT to that obtained by the VN equation.

By using the qAHT(3s) and qVN(3s), we compute the single quan-
tum (SQ) and double quantum (DQ) coherences of the density ma-
trix. Fig. 2A highlights the absolute value of the difference of these
two values as a function of xQ for different values of s. For quadru-
polar frequencies below 250 kHz, a pulse width of 2a=1 ls and
pulse spacings as large as s=25 ls, first-order AHT appears to come
within 80 percent of the solution predicted by the numerical calcu-
lation from the VN equation for I = 1. However, the situation is
more complex for the multiple quantum coherences. Fig. 2B high-
lights the difference of DQ coherences computed from first-order
AHT to that of the DQ coherences from a numerical solution of
the VN equation at 3s. The results show that AHT predicts these
coherences only in the case of short pulse spacings and much
weaker coupling. A similar analysis was extended to the case of
I = 3/2 and I = 5/2. Figs. 3A and 4A again highlight the difference
of SQ coherences at 3s as predicted by AHT and a numerical solu-
tion of the VN equation for I = 3/2 and I = 5/2 respectively. Figs. 3B
and 4B show the difference of TQ coherences at 3s as predicted by
AHT and a numerical solution of the VN equation for I = 3/2 and
I = 5/2 respectively. The results indicate that the dynamics appear
more complex for these higher spin systems for the range of s and
xq studied. Whereas AHT appears to predict the dynamics quite well
for spin I = 1 over a large bandwidth, the perturbation scheme works
well only for small s spacings and small bandwidths for I = 3/2 and
I = 5/2 as expected from the analysis presented above.

The size of the zero-order term relative to the first-order term
contribution for I = 3/2 and 5/2 should be emphasized. In the case
of spin I = 1, we found that the first-order term is proportional to
a2. On the other hand, the first-order term for spin I = 3/2 and
I = 5/2 included a s2 dependence. Thus for spin I = 3/2 and I = 5/2
systems, the zero-order contribution is only relevant if the first-or-
der contribution does not dominate, i.e. for small s. Referring to
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Fig. 2. (A) Absolute value of the difference of the observable single quantum (SQ) coheren
VN equation for the pulse sequence shown in Fig. 1 for different values of s. (B) Absolute
by first-order AHT and that from a numerical solution to the VN equation for the same pu
taken to be 1 ls.
Figs. 3 and 4, the agreement for the SQ coherences between AHT
and the VN equation is good over a bandwidth of approximately
50 kHz, when s = 2 ls for both I = 3/2 and I = 5/2. For a larger pulse
spacing of s = 10 ls, the agreement is shown to deteriorate. In con-
trast, Fig. 2 indicates that the agreement between SQ coherences
computed by AHT and the VN equation for spin I = 1 is relatively
independent of the pulse spacing. However, the situation is more
complex for the higher order coherences. Referring to Fig. 2B for
I = 1, the agreement between DQ coherences computed by AHT
and the VN equation appears tau dependent. A similar finding
was observed for the TQ coherences for spin I = 3/2 and I = 5/2
shown in Figs. 3 and 4. This is likely due to higher order terms of
the Magnus expansion that have not been included in our calcula-
tion. As higher order terms are accounted for in the system dynam-
ics, however, it is expected that AHT should converge to a
numerical solution obtained by the VN equation. As a further test
of the contribution of the first-order term of the Magnus expansion
to the system dynamics, we consider the same pulse sequence and
compare the results in the case when only the zeroth-order term is
accounted for, and then when the first-order term is taken into ac-
count. Fig. 5 highlights the difference of SQ coherences as predicted
by AHT to a numerical solution of the VN equation to zeroth
ðH1

xq
¼ 0Þ and then to first-order ðH1

xq
6¼ 0Þ for the case of spin

I = 1. The results show that for two different values of s that the
first-order term contributes little to the dynamics. Figs. 6 and 7
highlight a similar calculation for I = 3/2 and 5/2 respectively. In
each case, the dynamics as predicted by AHT appear to be in better
agreement when the first-order term is accounted for, especially
for these cases. Thus it is expected that as higher order terms are
taken into account, AHT is expected to converge to the solution ob-
tained by the VN equation.

Next we focus on the effects of finite pulse widths on the spec-
tra of spin I = 1, 3/2 and 5/2 nuclei acquired by the pulse sequence
shown in Fig. 1. The analysis presented above will be used in a sim-
ple test to probe our ability to predict the spin dynamics based on
zeroth order AHT. In a previous paper, we reported on a phase cy-
cling scheme that suppresses artifacts for spin I = 1 nuclei for the
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lse sequence and different values of s. In both simulations, the p/2 pulse width was
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Fig. 3. (A) Absolute value of the difference of the observable single quantum (SQ) coherences for I = 3/2 as predicted by first-order AHT and that from a numerical solution to
the VN equation for the pulse sequence shown in Fig. 1 for different values of s. (B) Absolute value of the difference of the triple quantum (TQ)coherences for I = 3/2 as
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I = 5/2 as predicted by first-order AHT and that from a numerical solution to the VN equation for the same pulse sequence and different values of s. In both simulations, the p/2
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same quadrupolar echo sequence shown in Fig. 1 [20]. In that
work, a spectral artifact was shown to arise from the compound
evolution of the spin system evolving under both the RF and quad-
rupolar Hamiltonian during the pulses delivered to the spin system
resulting in an asymmetric quadrupolar pattern. By cycling the
phases of the RF pulses and receiver in a well-defined manner, it
was shown that this artifact may be suppressed to zeroth-order
of the Magnus expansion. To verify the calculations presented
above, we implement the same phase cycling scheme on spin
I = 3/2 and I = 5/2 nuclei and then test these cycles experimentally
and by simulation.

Given the density matrix of the spin system at time 3s, the state
of the system at any point in time tk is given by

qAHT;VNðtkÞ ¼ expð�iHQ tkÞqð3sÞAHT;VN expðiHQ tkÞ ð28Þ

where HQ is given in Eq. (1). The detected signal at time tk is found
by performing the computation
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xq ¼ 0) and the improvement when the second term in the Magnus expansion is accounted for (i.e. H1
xq 6¼ 0).
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SignalðtkÞ ¼ Trace qðtkÞ½Ix þ iIy�
� �

ð29Þ

For an x, y cycle, according to the VN equation, the state of the spin
system at 3s is given by

qð3sÞVN ¼ exp½�iHQ ðs� aÞ� exp½�ixrf Iy2aþ iHQ 2a�
exp½�iHQ ðs� 2aÞ� exp½�ixrf Ix2a� iHQ 2a�qð0Þ
exp½ixrf Ix2aþ iHQ 2a� exp½iHQ ðs� 2aÞ�
exp½ixrf Iy2a� iHQ 2a� exp½iHQ ðs� aÞ�

ð30Þ

By AHT, the density matrix at 3s is given by Eq. (3). In the following,
we only consider the zeroth-order term of the Magnus expansion in
our simulations. By evolving q(3s)AHT, VN ? q(3s + t)AHT,VN under
2 2 2 2 2
Eq. (1), we simulated the spectra of powdered sample of spin I = 1,
3/2 and 5/2.

2.1. Spin-3/2

Taking the results for the first-order term of the Magnus
expansion given in Table 1 and Eq. (4), the density matrices
at 3s, q(3s), for all eight cycles of the quadrupolar echo pulse
sequence for a spin system of I = 3/2 nuclei are provided be-
low. Each density matrix highlights the effect of finite pulse
widths on the system evolution and the state of the system
at 3s.
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In the above expressions, the constants A11, A12 and A13 are given
by the relations
A11 ¼ 1� cos
ffiffiffi
6
p

W
� �

A12 ¼ sin
ffiffiffi
6
p

W
� �

A13 ¼ 1þ cos
ffiffiffi
6
p

W
� � ð39Þ

The constant W is again given by

W ¼ 12axQ

p
ð40Þ

where 2a is the p/2 pulse width. Consider the case of a p
2 pulse about

the x-axis followed by a p
2 pulse about the y-axis. In the limit of delta

function RF pulses (a ? 0), the constant W will be zero, and the con-
stants A11 and A12 will be zero. In this idealized limit, the DQ coher-
ences vanish, and one is left with only SQ coherences. However,
with even modest RF pulse power, a can only be made on the order
of 1 ls, and so the system at the echo peak will also contain a DQ
coherence. This double coherence does not evolve to SQ coherences
under the secular quadrupolar interaction given in Eq. (1) and is not
detectable. However, the SQ coherences for any given cycle above is
the combination of both even and odd functions. For instance, in the
case of an x, y cycle, the sum of A13 and A12 is the sum of even and
odd functions. Upon performing a Fourier transform of the signal
from the echo peak, the sum of odd and even functions will result
in an asymmetric spectrum. The artifact cannot be corrected by
phasing the spectra due to the presence of both odd and even func-
tions in the signal.

With the goal of canceling this artifact in the detected signal, we
wish to remove the odd and even functions that comprise the SQ
coherences of the density matrix at 3s. For spin I = 1, we found
one such phase cycle is given by the following phase cycling
scheme

/1 ¼ fx; x;�x;�x; y; y;�y;�yg
/2 ¼ fy;�y; y;�y; x;�x; x;�xg
RP ¼ f270;270;90;90;0;0;180;180g

ð41Þ

where /1 is the phase of the first pulse, /2 is the phase of the
second pulse and RP is the receiver phase and is given in
degrees [20].
,

.

Using the above results, the signal detected is given by
Signalð3sÞAHT ¼ Trace qAHT
x;y ð3sÞ

� �
þ qAHT

x;�yð3sÞ
n

� qAHT
�x;yð3sÞ � qAHT

�x;�yð3sÞ
� �

�Iy;1 þ iIx;1
� �

� qAHT
y;x ð3sÞ þ qAHT

y;�xð3sÞ � qAHT
�y;xð3sÞ � qAHT

�y;�xð3sÞ
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� Ix;1 þ iIy;1
� ��

ð42Þ
and reduces to the following expression
Signalð3sÞAHT ¼ 2 1þ cos
ffiffiffi
6
p

W
� �� �

Iyð�Iy þ iIxÞ � IxðIx þ iIyÞ
� �

ð43Þ
with W ¼ 12axQ
p . The amplitude modulation, 2 1þ cos

ffiffiffi
6
p

W
� �� �

reduces the signal intensity symmetrically over the spectrum and
will depend on the width of the p/2 pulses.

Fig. 8 highlights simulated spectra for spin I = 3/2 by using a
dwell time equal to 0.25 ls and a quadrupolar coupling con-
stant equal to 80 kHz. We assumed a sample with a random
distribution of orientations, a quadrupolar asymmetry parame-
ter g = 0, set the pulse width 2a to 1 ls and s = 50 ls. The re-
sults shown in Fig. 8A show the case of a cycle where the
first pulse was p/2 about the x-axis, and the second pulse
was p/2 about the y-axis. The spectra appear distorted and
asymmetric. Fig. 8B highlights the result when the signals are
co-added using the phase cycling scheme suggested in Eq
(41), and the distortion is removed to some extent resulting
in symmetric spectra. The simulation results should be con-
trasted to the experimental data shown in Fig. 9, which are dis-
cussed in Section 3.

2.2. Spin I = 5/2

Using Eq. (3). and the zeroth-order terms of the Magnus expan-
sion, the density matrices at 3s for all eight cycles of the quadrupo-
lar echo pulse sequence were computed for spin I = 5/2 and are
given in matrix form below
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Fig. 8. (A) Simulated spectra acquired with an x, y cycle from Fig. 1 for a spin I = 3/2 system. (B) Simulated spectra using the pulse sequence in Fig. 1 with the eight-step phase
cycling scheme given in Eq. (42) for a spin I = 3/2 system. In the simulation s = 50 ls, a = 1 ls and dw = 0.25 ls.
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Fig. 9. (A) Experimental spectra of NaNO3 acquired with a two-pulse quadrupolar echo with the eight-step phase cycling scheme given in Eq. (42). (B) Experimental spectra of
NaNO3 acquired with an x, y cycle and no phase cycling. In the experiment the p/2 pulse width was set to 1.2 ls and the s spacing was set to 150 ls.
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Table 2
Constants used in the expressions for the density matrices of a spin I = 5/2 nuclear
spin system
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For the expressions in the density matrices for spin 5/2, the con-
stants are given in Table 2. In each of the density matrices exists
double-, triple-, fourth- and fifth-order quantum coherences. Care-
ful inspection of the tabulated constants reveals that these terms
result from the evolution of the spin system during the RF pulses.
In the limiting case of ideal d-function pulses, these coherence are
all seen to vanish. For any given cycle, the constants that compose
the first-order coherence A27, A21, A210, A23, A24 are both odd and
even functions. The sum of odd and even functions, as discussed
above for spin I = 3/2, will result in a slightly asymmetric spectrum
for each cycle.

Using the same approach for spin I = 3/2 and I = 1, we add or
subtract the cycles to cancel these deleterious terms. The result
for the echoes forming on the x axis relative to the receiver is given
by
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x ð3sÞ ¼ qAHT
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For the echoes occurring on the y axis relative to the receiver one
finds

SAHT
y ð3sÞ ¼ qAHT

x;y ð3sÞ þ qAHT
x;�yð3sÞ � qAHT

�x;yð3sÞ � qAHT
�x;�yð3sÞ; ð54Þ

which reduces to

SAHT
y ð3sÞ¼

0 �iA21 0 iA22 0 �i 5
2

ffiffiffiffiffiffi
10
p

A22

iA21 0 �iA23 0 �i7
2

ffiffiffiffiffiffi
10
p

A22 0
0 iA23 0 iA24 0 iA22

�iA22 0 �iA24 0 �iA23 0
0 i7

2

ffiffiffiffiffiffi
10
p

A22 0 iA23 0 �iA21

i 5
2

ffiffiffiffiffiffi
10
p

A22 0 �iA22 0 iA21 0

0BBBBBBBBB@

1CCCCCCCCCA
ð55Þ
The triple- and fifth-order quantum coherences terms do not evolve
under the secular quadrupolar Hamiltonian and are hence constants
of the motion. The constants that compose the first-order coher-
ences A21, A23, A24 are now all only even functions. Thus, we sup-
press the odd functions and remove the spectral distortion by
phase cycling to first-order of the Magnus expansion. In the limiting
case of a ? 0, the density matrices at 3s calculated above reduce to

Sxð3sÞ ¼ �4Ix ð56Þ

and

Syð3sÞ ¼ 4Iy ð57Þ

This corresponds to the case of perfect refocusing of the spin mag-
netization and is what one would expect in the case of d-function RF
pulses.

We simulated the spectra for a spin I = 5/2 ensemble with
2a = 1 ls, s = 150 ls and xQ = 80 kHz. The simulation shown in
Fig. 10 illustrates five peaks corresponding to the five transi-
tions involving six energy levels of spin I = 5/2. Fig. 10A shows
the results when an x, y cycle is applied. Our results in Fig. 10A
indicate that the spectra is skewed, and Fig. 10B shows that the
distortion is not removed by the phase cycling scheme that ap-
peared to work for I = 1 and I = 3/2, given in Eq. (42). We
empirically found that the subtraction of x, y to �x, y appears
to remove the distortion present in the spectra, shown in
Fig. 10C. The zeroth-order analysis presented for I = 5/2 does
not predict this behavior because the first-order term, which
is proportional to s2, is larger than the zeroth-order term, which
is proportional to a2.

3. Experiment

We investigated the effects of finite pulse width artifacts and
the correction one would expect to achieve by implementing the
phase cycling scheme outlined in the previous section on a pow-
dered sample of NaNO3 containing I = 3/2 nuclei and a second sam-
ple of AlCl3 containing I = 5/2 nuclei. For the sample containing
spin I = 3/2 nuclei, we used a packed powdered sample of NaNO3

in a glass tube having an outer diameter of approximately 2 mm.
The experiments for this sample were performed using a home-
built probe tuned to the Larmor frequency of Na, which was
approximately 47.47 MHz in our magnet. The AlCl3 samples were
packed into a 7 mm MAS rotor, and the experiments were run
using a Doty Scientific probe fitted with capacitors capable of han-
dling high RF power. The experiments for both samples were per-
formed using an Apollo Tecmag spectrometer at room
temperature. For each nucleus, the radio frequency pulses were
tuned by using well known techniques from multiple-pulse NMR
[11].

Fig. 9 shows the experimental quadrupolar echo spectra for
the NaNO3 sample acquired with a pulse width of 1.2 ls with
and without the phase cycling scheme given in the previous
section. The experimental spectra shown were acquired using
pulse spacing of 150 ls. The data show that without the phase
cycling scheme an asymmetry is present in the spectra. This is
due to the presence of both odd and even functions in the SQ
coherences of the density matrix well predicted by the spectral
simulations shown in Fig. 8. The asymmetry is expected to van-
ish in the limiting case of a ? 0, as shown in the previous sec-
tion. With the phase cycling scheme implemented, we produce
symmetric spectra as predicted by AHT and shown in the sim-
ulation results. The sharp peak in the middle of the spectra is
due to the �1/2 to 1/2 transition for spin 3/2 nuclei, and the
small peak approximately 213 kHz off resonance we believe re-
sults from copper in the RF coil that could not be phase cycled
away.



Fig. 10. (A) Simulated spectra acquired with the eight-step phase cycling scheme given in Eq. (42) for a spin I = 5/2 system. (B) Simulated spectra using an x, y cycle for a spin
I = 5/2 system. In the simulation s = 50 ls, a = 1 ls and dw = 0.25 ls.
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While it is expected that the phase cycling scheme introduced
in this work should correct for the finite pulse width artifact of
an asymmetric spectrum, we experimentally find that the artifacts
are not suppressed as well for I = 5/2 as that found for spin I = 1
[20] and in Fig. 9 for spin I = 3/2. For spin I = 5/2, Fig. 11 highlights
the experimental data acquired at 1.1 ls with and without the arti-
fact suppressing phase cycling scheme. The data indicate that with
the proposed phase cycling scheme shown in Eq. (42), the symme-
try of the spectra is recovered to some extent. With shorter pulse
spacings, the spectra may be further distorted due to the ring-
down of the RF coil. However, such artifacts associated with short
echo times may be removed by implementing a well-defined phase
cycling scheme as discussed by others [21,22].
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Fig. 11. (A) Experimental spectra of AlCl3 acquired with a two-pulse quadrupolar echo
spectra of AlCl3 acquired with only an x, y cycle and no phase cycling. In the experimen
4. Conclusion

In this work, we investigated controlling the dynamics of I = 1,
I = 3/2 and I = 5/2 nuclei by AHT. A numerical study of a well
known two-pulse cycle showed that first-order AHT predicts the
spin dynamics for spin I = 1 over a large bandwidth, and for rela-
tively large pulse spacings. For spin I = 3/2 and I = 5/2 nuclei, AHT
predicts the dynamics of the spin system only for short s, small
bandwidths and short RF pulses. To probe our ability to control
the coherent evolution of a quadrupolar spin system by AHT, we
studied a phase cycling scheme shown to suppress spectral arti-
facts associated with finite pulse widths [20]. Experimentally it
was demonstrated that the artifacts can be suppressed only for nu-
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and with the eight step phase cycling scheme given in Eq. (42). (B) Experimental
t, the p/2 pulse width was set to 1.1 ls and the s spacing was set to 150 ls.
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clei having a low quadrupolar moment due to the contribution of
non-negligible higher order terms in the Magnus expansion. While
this work focused on a simple two-pulse sequence, the efficiency of
AHT is intimately tied to this cycle. More efficient truncation of the
Magnus expansion is expected for quadrupolar spins by exploiting
the symmetry properties of a pulse sequence [23].
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